
Sitecore Adaptive Print Studio
Adaptive Print Studio 1.0 - Using Script Objects, February 27, 2012

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved. 

Page 1

Adaptive Print Studio 1.0

Using Script Objects
Using Script Objects



Adaptive Print Studio 1.0

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved. 

Page 2

Table of Contents
Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Working with tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Page type production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Chapter 2 Using tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Chapter 3 Transformations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16



Using Script Objects

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved. 

Page 3

Chapter 1

Introduction

This document describes how to use the Script objects to extend the standard 
functionality of the Sitecore InDesign connector.

This tutorial assumes that you have good knowledge of Sitecore, InDesign and XML in 
more general. You will also need the engine XML schema files at hand while creating 
the logic to publish the XML.



User Manual

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved. 

Page 4

1.1 Using Script Objects
A script object allows the execution of external assembly at runtime during the execution of an 
InDesign Project. In order to have a script attached to an Item in the Document items hierarchy we 
need to create a masterscript item (template: /sitecore/templates/Print Studio Templates/Publishing 
Engine/P_MasterScript) item.

The master script item contains the necessary fields and values for the script to be executed.

The Assembly field value points to the assembly that should be invoked, it needs a full physical 
assembly name. If only the assembly name is entered the engine will look for the assembly in the bin 
folder of the website. If the full path is entered, it will load the assembly from the path location.

The TypeName field points to the class that should be instantiated; it needs the full class name 
including the namespace.

The MethodName field contains the name of the method that should be executed; it has to be a 
method in the class declared in TypeName field.

Once we have those values set a dynamic invocation will be performed using Reflection.

A standard list of parameters will be sent to the method being executed, so the method needs to 
accept either object or Dictionary<string, object> as a parameter.



Using Script Objects

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved. 

Page 5

Code Example:

public string ExecuteScript(Dictionary<string, object> dictionary)
{
    StringBuilder resultBuilder = new StringBuilder();
    if (dictionary != null)
    {
        foreach (KeyValuePair<string, object> k in dictionary)
        {
            resultBuilder.AppendFormat("<ParagraphStyle Style=\"plattetekst\">{0} - {1}
</ParagraphStyle>", k.Key, k.Value.ToString());

        }
        Guid itemID = (Guid)dictionary["ItemID"];
        Guid contentItemID = (Guid)dictionary["ContentItemID"];
        int languageIndex = (int)dictionary["LanguageIndex"];
        bool isClient = (bool)dictionary["IsClient"];
        string destinationFolder = dictionary["DestinationFolder"].ToString();
        bool useHighRes = (bool)dictionary["UseHighRes"];
        string database = dictionary["Database"].ToString();
    }
    return resultBuilder.ToString();
}

Parameters description:

Key Type Description

dictionary["ItemID"] Guid The script item ID

dictionary["ContentItemID"] Guid The parent item ID

dictionary["LanguageIndex"] int Language index

dictionary["IsClient"] bool Indication whether the caller is from desktop (true) or 
server (false)

dictionary["DestinationFolder"] string The project folder on client

dictionary["UseHighRes"] bool Whether to use High resolution images or not

dictionary["Database"] string Item database in sitecore (default is master)

dictionary["CurrentUserName"] string username



User Manual

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved. 

Page 6

1.2 Working with images
Working with images in print output is of course different than using images for a website. In print 
output the images need to be available as physical files to InDesign desktop (when working on the 
desktop client) or the InDesign server (when working in a web-to-print situation). Besides that we have 
the need for both small file sizes and high resolution larger file sizes when a high quality PDF 
production is needed to send to print.

When we work with the InDesign client (InDesign connector), the images loaded in the locally rendered 
document, need to be available to the InDesign client. Therefore the images will be downloaded to the 
client and the XML needs to contain paths to those images.

The images need to be available on the server and will be automatically downloaded by the InDesign 
client. When on the InDesign client the “Use high res images” is switched on, it assumes that the 
images are accessible on some location on some file storage that is accessible by the InDesign client. 
In that case the images are not downloaded.

When working on a server based production, the images need to be available to the InDesign 
application server. In such a case we refer to the images stored on a path accessible by InDesign 
server, there is no need for downloading images.

Code sample:

private static string CreateImageOnServer(MediaItem medItem, bool fromClient, bool 
useHighRes, string projectsPathOnServer, string destinationFolderOnClient)

    {
      Stream stream = medItem.GetMediaStream();
      string imagePath = string.Empty;

      // first check if a high res production is requested
      if (useHighRes)
      {
        // if yes, use the high path values from the selected image item if available
        // regardless if its from the ID client or front end since both need to use the same

        // the item needs to use the storage item to compile the full path
        Item storeItem =  
medItem.Database.GetItem(medItem.InnerItem.Fields["ReferenceStorePaths"].Value);

        string storagePath = storeItem.Fields["HighResFilePath"].Value;
        imagePath = storagePath + medItem.InnerItem.Fields["HighResFilePath"].Value;
      }
      else
      {
        if (fromClient)
        {
          // if its a request from the InDesign client, use image from the database
          // (you could use the low resolution images also of course)

          // the image needs to be available to the InDesign client so we need to use
          // the local path on the desktop machine. 
          // the image needs to be created in the projects folder on the server
          // and we use the local path in the XML. When the XML is loaded the image will
          // be downloaded by the client from the server location.
          // projects path + subfolder (project name) + item Id + extension

          try
          {
            // create the image on the server in the projects folder
            // you could use the project name instead of the "temp" folder or some image storage
            CopyStreamToFile(stream, projectsPathOnServer + "temp" + "\\" + medItem.ID + "." + 
medItem.Extension);



Using Script Objects

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved. 

Page 7

            // return the path used in the XML for the ID connector (local path on the
            // client machine)
            imagePath = destinationFolderOnClient + medItem.ID + "." + medItem.Extension;
          }
          catch { }
        }
        else
        {
          // its a request from a front end (server based production), so use the low res path 
values if available

        }
      }

      return imagePath;
    }

    private static string CopyStreamToFile(Stream stream, string destination)
    {
      char[] trimChars = { '.', ' ' };
      string result = destination.TrimEnd(trimChars);
      using (BufferedStream bs = new BufferedStream(stream))
      {
        using (FileStream os = File.OpenWrite(destination))
        {
          byte[] buffer = new byte[2 * 4096];
          int nBytes;
          while ((nBytes = bs.Read(buffer, 0, buffer.Length)) > 0)
          {
            os.Write(buffer, 0, nBytes);
          }

          os.Close();
        }
      }

      return result;
    }

When we then create the actual XML element by using for example:

    public string ExecuteScriptImageFrame(Dictionary<string, object> dictionary)
    {
      StringBuilder resultBuilder = new StringBuilder();
      if (dictionary != null)
      {
        try
        {
          XslHelper appSettings = new XslHelper();
          XmlDataDocument schemaDoc = new XmlDataDocument();
          XmlNamespaceManager nsmanager = new XmlNamespaceManager(schemaDoc.NameTable);
          nsmanager.AddNamespace("xs", "http://www.w3.org/2001/XMLSchema");
          schemaDoc.Load(string.Format("{0}Data\\PrintStudioPublishingEngine.xsd", 
appSettings.AppSetting("APS.Root")));

          string projectsPathOnServer = appSettings.AppSetting("APS.ProjectsPath");

          Guid itemID = (Guid)dictionary["ItemID"];
          Guid contentItemID = (Guid)dictionary["ContentItemID"];
          int languageIndex = (int)dictionary["LanguageIndex"];
          bool isClient = (bool)dictionary["IsClient"];



User Manual

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved. 

Page 8

          string destinationFolder = dictionary["DestinationFolder"].ToString();
          bool useHighRes = (bool)dictionary["UseHighRes"];
          string database = dictionary["Database"].ToString();
          string currentUserName = dictionary["CurrentUserName"].ToString();

          // get the script items parent (the textframe)
          string fieldContent = "none";

          Hashtable atts = new Hashtable();
          atts.Add("Width", "100");
          atts.Add("Height", "200");
          atts.Add("X", "100");
          atts.Add("Y", "200");
          atts.Add("Scaling", "Fill Frame Proportionally and Center");
          atts.Add("SitecoreID", "{" + itemID.ToString().ToUpper() + "}");

          XmlDataDocument tempDoc = new XmlDataDocument();
          XmlNode imageFrame = CreateElement("ImageFrame", schemaDoc, nsmanager, atts, 
tempDoc);

          // add the image
          // fetch some media item (make sure the item ID exists)
          Database currentDb = Configuration.Factory.GetDatabase(database);
          MediaItem someItem = currentDb.SelectSingleItem("{23A86125-DEA2-48C5-B9BD-
FE0D42233685}");

          string imagePath = CreateImageOnServer(someItem, isClient, useHighRes, 
projectsPathOnServer, destinationFolder);

          atts.Clear();
          atts.Add("Width", "50");
          atts.Add("Height", "100");
          atts.Add("LowResSrc", imagePath);
          atts.Add("HighResSrc", imagePath);
          XmlNode image = CreateElement("Image", schemaDoc, nsmanager, atts, tempDoc);
          imageFrame.AppendChild(image);

          resultBuilder.AppendLine(imageFrame.OuterXml);
        }
        catch { }
      }

      return resultBuilder.ToString();
    }

private static XmlNode CreateElement(string elementName, XmlDataDocument schemaDoc, 
XmlNamespaceManager nsmanager,
         Hashtable atts, XmlDataDocument tempDoc)

    {
      // create new element
      XmlNode newElement = tempDoc.CreateElement(elementName);

      // fetch the attributes for this element
      try
      {
        XmlNodeList attributeList = schemaDoc.SelectNodes("//xs:element[@name='" + elementName 
+ "']//xs:attribute",
                                                              nsmanager);

        foreach (XmlNode attributeNode in attributeList)
        {
          string attName = attributeNode.Attributes["name"].Value;
          string attDefValue = string.Empty;



Using Script Objects

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved. 

Page 9

          try 
          {
            attDefValue = attributeNode.Attributes["default"].Value;
          }
          catch { }

          // check if the attribute is in the pattern item and if so, use that value
          try
          {
            attDefValue = atts[attName].ToString();
          }
          catch { }

          // create the attribute
          XmlAttribute newAtt = tempDoc.CreateAttribute(attName);
          newAtt.Value = attDefValue;
          newElement.Attributes.Append(newAtt);
        }
      }
      catch { }

      return newElement;
    }

The ImageFile parameter is passed to both the LowResSrc and the HighResSrc attribute. Depending 
on whether it’s a low or high res production these attributes will get both the high or low res file path. Its 
UseHighRes attribute of the Project element that determines which one of them is used. When 
UseHighRes = true, the HighResSrc attribute is used. When UseHighRes = false, the LowResSrc 
attribute is used.

1.3 Working with tables
When producing more structured documents, tables are very useful. A basic table in InDesign consists 
of for example:

<Table TableStyle="Basic" HeaderRows="0" RepeatHeader="Once per frame" FooterRows="0" 
ColCount="4" RowCount="">

<Row RowHeight="" RowMin="" KeepWithNext="" StartRow="" RowMax="">
<Cell ColWidth="" CellStyle="" HorStradle="" VerStradle="">
<ParagraphStyle Style="Body">Hello world</ParagraphStyle>

</Cell>
<Cell ColWidth="" CellStyle="" HorStradle="" VerStradle=""></Cell>
<Cell ColWidth="" CellStyle="" HorStradle="" VerStradle=""></Cell>
<Cell ColWidth="" CellStyle="" HorStradle="" VerStradle=""></Cell>

</Row>
</Table>

Always make sure that the table structure is correct. When InDesign shuts down unexpectedly, it is in 
most cases related to an invalid table structure.

The following code snippet creates a table and adds the “Hello world” paragraph to the second row, 
second cell.



User Manual

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved. 

Page 10

Sample code:

    private static XmlNode CreateTable(XmlDataDocument schemaDoc, XmlNamespaceManager 
nsmanager, XmlDataDocument tempDoc)

    {
      // create the table with 4 columns 5 rows (incl header and footer rows), 1 header row and 
0 footer rows

      Hashtable atts = new Hashtable();
      atts.Add("RowCount", "5");
      atts.Add("ColCount", "4");
      atts.Add("TableStyle", "NewTable");
      atts.Add("HeaderRows", "1");
      XmlNode tableNode = CreateElement("Table", schemaDoc, nsmanager, atts, tempDoc);
      // add the rows and cells
      for (int a = 0; a < 5; a++)
      {
        // add a row to the table
        atts.Clear();
        XmlNode newRow = CreateElement("Row", schemaDoc, nsmanager, atts, tempDoc);
        tableNode.AppendChild(newRow);

        for (int b = 0; b < 4; b++)
        {
          // add a cell for each column
          atts.Clear();
          XmlNode newCell = CreateElement("Cell", schemaDoc, nsmanager, atts, tempDoc);
          newRow.AppendChild(newCell);

          // add a paragraph to the second row, second cell
          if ((b == 1) && (a == 1))
          {
            // create the hello world paragraph
            atts.Clear();
            XmlNode newPar1 = CreateElement("ParagraphStyle", schemaDoc, nsmanager, atts, 
tempDoc);

            newPar1.InnerText = "Some content";
            newCell.AppendChild(newPar1);
          }
        }
      }

      return tableNode;
    }



Using Script Objects

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved. 

Page 11

1.4 Using script objects to create an entire document
When you want to use a script object to produce an entire InDesign document, you need to attach a 
script object to the document node as shown below.

This script is now executed as the child of the document node. According to the engine XML schema, 
the child of “Document” needs to be “Pages” or “Flows”. Therefore your script object should start with 
one of those elements.

1.5 Page type production
You use a page type production if the lay-out is “page oriented” and you want to add pages with the 
logic. The objects on the page (text frames or image frames) in most cases have fixed positions and 
more or less fixed sizes. In general most InDesign productions tend to be page oriented productions 
where the design is the key factor. The XML structure looks like:



User Manual

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved. 

Page 12

1.6 Flow type production
You use a “Flow” type production if you want to add pages depending on the content. 

This is a “data-driven” lay-out where the amount of pages is depending on the amount of data and the 
formatting rules set in the master document. In general you could say that the longer textual 
documents (like manuals, technical catalogues/pricelist, etc.) are flow type productions. The XML 
structure looks like:



Using Script Objects

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved. 

Page 13

Chapter 2

Using tasks

To automate certain tasks from the InDesign connector interface, a task item can be 
created. A sample of a task could be “create a new project and add certain pages” or 
“rename all snippets in a project”. This allows adding specific tasks and executing 
those tasks from the InDesign connector interface. 



User Manual

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved. 

Page 14

2.1 Creating tasks
The tasks are shown in the “Extensions” panel in the “Tasks library” as shown below. 

To create a task, add a task item somewhere in the task library inside  Sitecore using the template /
sitecore/templates/Print Studio Templates/InDesign connector/Tasks/Task. 

Fill in the fields Assembly, TypeName and MethodName.



Using Script Objects

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved. 

Page 15

The following parameters are passed:

For example:

    public string ExecuteTask(Dictionary<string, object> dictionary)
    {
      string result = string.Empty;
      if (dictionary != null)
      {
        foreach (KeyValuePair<string, object> k in dictionary)
        {
          result += " key: " + k.Key + " value: " + k.Value + " ";
        }

      }

      return result;
    }

The result of the called method is returned and shown as a message in the InDesign connector.

Key Type Description

dictionary["ItemID"] Guid The task item ID

dictionary["LanguageIndex"] int Language index

dictionary["CurrentUserName"] string username

dictionary["ci_projectPanel"] string Selected item project panel

dictionary["ci_contentBrowser"] string Selected item content browser panel

dictionary["ci_libraryBrowser"] string Selected item library browser panel

dictionary["ci_imageViewer"] string Selected item image viewer panel

dictionary["ci_workBox"] string Selected item worbox panel



Using Script Objects

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved. 

Page 16

Chapter 3

Transformations

To transform HTML (web) to XML (InDesign) when publishing to InDesign or to 
transform XML (InDesign) to HTML (web) when saving content from InDesign, a 
transformation can be used.



Using Script Objects

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved. 

Page 17

3.1 Creating transformations
To transform HTML content from Rich Text fields to engine XML, transformation items can be created 
(please refer to the administrator manual). To transform the content from HTML to XML (when 
publishing) or from XML to HTML (when saving) by using additional logic, the transformation item can 
use a “scriptobject” as well.

The default transformation item used to transform the content is set in the “Default settings” item (path: 
/sitecore/Print Studio/Modules/InDesign connector/Other Settings/Default settings/Default settings), 
“Default transformation” as shown below:



User Manual

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved. 

Page 18

The “Default transformation” field points to a transformation item.

To use external logic for the transformation, check the “Use assembly” checkbox and fill in the correct 
values for the “Assembly”, “TypeName” and “MethodName” fields. 

The following parameters are passed:

The result of the called method is returned and used to either publish or save.

Key Type Description

dictionary["ItemID"] Guid The transformation item ID

dictionary["InputString"] string The input data (when publishing this is the value from 
the Rich Text field, when saving this is the XML 
structured value from InDesign

dictionary["SourceFormat"] string Whether the source is XHTML (publishing) or XML 
(saving)

dictionary["TargetFormat"] string Whether the target format is XHTML (saving) or XML 
(publishing)


	Chapter 1 Introduction
	1.1 Using Script Objects
	1.2 Working with images
	1.3 Working with tables
	1.4 Using script objects to create an entire document
	1.5 Page type production
	1.6 Flow type production

	Chapter 2 Using tasks
	2.1 Creating tasks

	Chapter 3 Transformations
	3.1 Creating transformations


